

ANALYSIS OF STATE OF CS EDUCATION POLICIES, SUCCESS METRICS, AND ECEP CAPE FRAMEWORK

LAWRENCE TANIMOTO

Issues to Assess Student Outcomes Experience of How does the quality of instruction ECEP CAPE differ across subgroups of students? **CS Education** How does this affect learning? Framework Participation in Student Enrollment Which subgroups are underrepresented CS Education in CS courses? To what extent? Access to **Course Offerings** Are CS courses offered in low-income CS Education

Capacity for

CS Education

Create a state plan Define computer science and Allocate funding for establish rigorous K-12 computer science teacher computer science standards professional learning computer science 6 Implement clear Create preservice programs Establish computer science certification pathways for In computer science at higher supervisor positions in computer science teachers education institutions education agencies Require that Allow a computer science Allow computer science to satisfy a higher education all high schools offer credit to satisfy a core computer science graduation requirement admission requirement

Teachers, Funding, Policies

Do districts in all areas have the resources

to offer CS? To train and certify teachers?

Examples of Equity

schools at similar rates to other schools?

Success Metrics in Report

AP CS Info

% of Students Enrolled in Foundational CS

% of Students in HS with CS

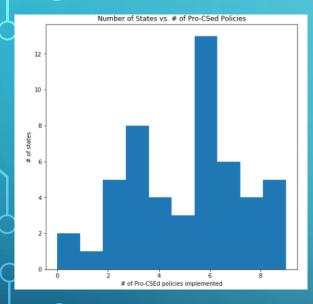
% HS with Foundational CS

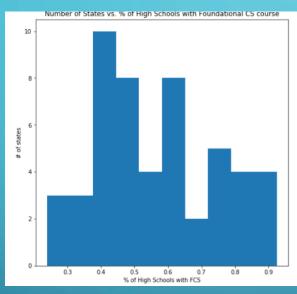
Number of Pro-CSEd Policies Implemented

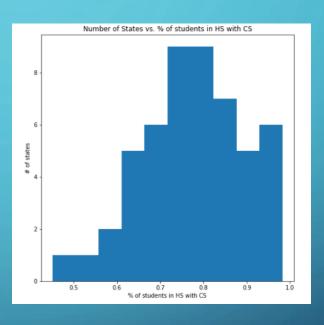
Code.org Pro-CSEd Policies

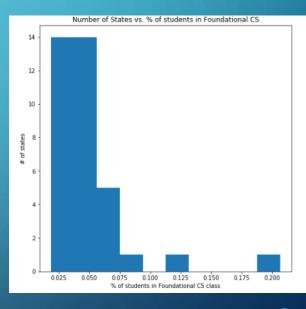
OBJECTIVES

- Better understand of the success metrics in 2021 State of CS Ed Report
- Understand how success at lower layers in CAPE affect higher layers
- Understand which policies are most effective at improving success metrics
- Suggest improvements to what policies to promote, success metrics to track


2021 State of CS Education report focuses on what policies have been implemented by which states and the % of high schools have a foundational CS course success metric. This report analyze data collected for the report but not necessarily highlighted and tries to add value and understanding


SUCCESS METRIC SUMMARY


	# of Policies	% of HS with FCS	% Students in HS w/ CS	% Students Enrolled in FCS
State Avg	5.16	57.4%	77.6%	4.9%
State Std Dev	2.42	17.7%	11.9%	3.3%
National Avg	5.48	51.3%	77.7%	4.7%
States w/Data	51	51	51	36


State Avg is average where each state has equal weight
National Avg is average weighted by number of schools or
number of students

SUCCESS METRIC HISTOGRAMS

of Policies

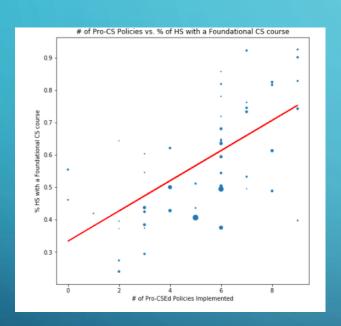
% of HS with FCS

% Students in HS w/ CS

% Students Enrolled in FCS

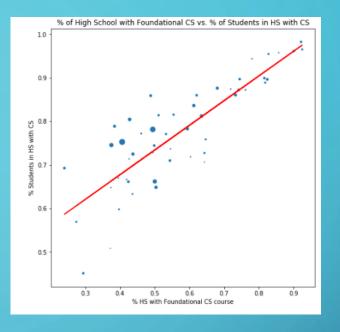
OBSERVATIONS

- CSEd Report focuses on # of policies implemented, % of HS with Foundational CS metrics
- Reported 51.7% of HS with Foundational CS is national average weighed down by large states; 57.4% is average over all states equal weighted.
- % of Students in HS with CS may include High Schools with a "Computer Science" class that do not have the 20 hours of coding to be considered "foundational"
- % of Students in HS with CS is roughly 40% 50% higher than % of HS with Foundational CS; % of HS with Foundational CS is roughly 10 times larger than % Students in Foundational CS

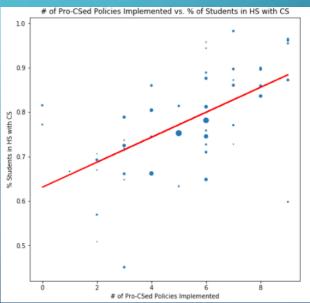

OUTLIERS (MORE THAN 2 STDEV)

- # Policies (5.16 State Avg)
 - Oregon 0
- % High Schools with Foundational CS (57.4% State Avg)
 - No Outliers
- % Students in HS with CS (77.6% State Avg)
 - District of Columbia (50.8%)
 - Louisiana (45.1%)
- % Students in Foundational CS (4.9% State Avg)
 - South Carolina (20.7%)
 - Maryland (12.5%)

SUCCESS METRICS RELATIONSHIPS


X Value	Y Value	Line of Regression	R2 Value
# of Policies	% of HS with FCS	$0.047 \times + 0.333$.404
# of Policies	% Students in HS with CS	$0.028 \times + 0.631$.328
% of HS with FCS	% Students in HS with CS	$0.567 \times + 0.451$.716
# of Policies	% Students in FCS	$0.005 \times + 0.021$.127
% of HS with FCS	% Students in FCS	0.115 x - 0.019	.363
% Students in HS with CS	% Students in FCS	0.158 x - 0.077	.295

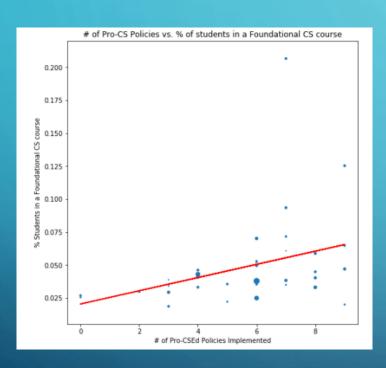
of Policies
vs.
% of HS with Foundational
CS



R2 = .404

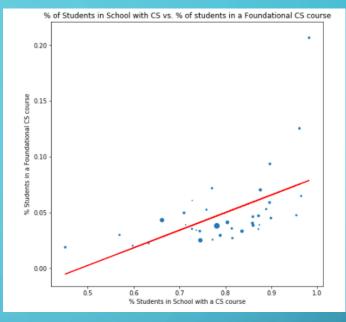
Size of dots reflect # HS, # Students; not reflected in regression

R2 = .716

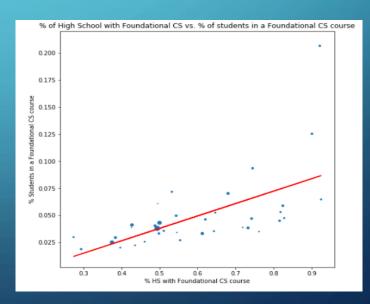


R2 = .328

% HS with
Foundational CS
Vs
% Students in HS
with CS


of Policies
Vs
% Students in HS
with CS

of Policies
vs.
% of Students in
Foundational CS



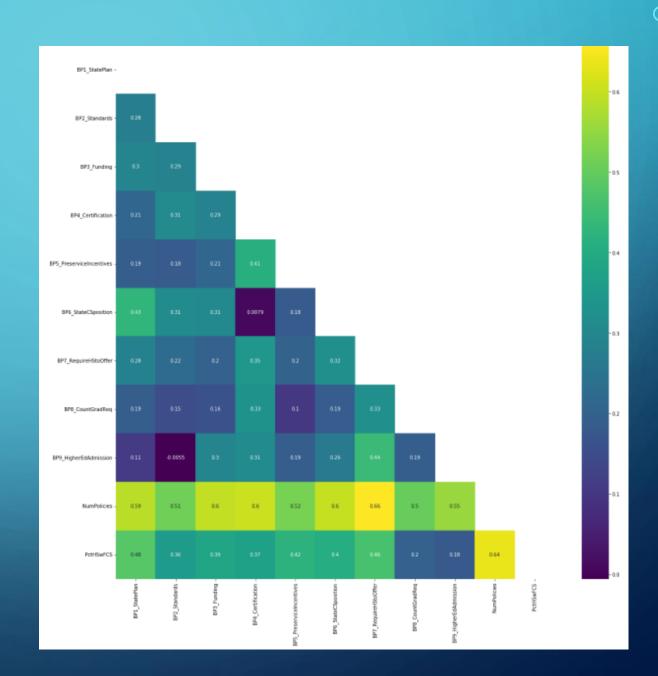
R2 = .127

Size of dots reflect # HS, # Students; not reflected in regression

R2 = .295

R2 = .363

% Students in HSwith CSVs.% of Students inFoundational CS


% HS with
Foundational CS
Vs
% of Students in
Foundational CS

OBSERVATIONS

- Relative R-squared values used to understand how success metrics correlate to each other
- CsEd report indicates R-squared of appx 0.42 for line of regression between # of policies and % of HS with foundational CS; The R-squared shows here indicates .404. Difference likely due to how policies considered implemented
- Strongest relationship between % of HS with foundational CS and % of students in HS with CS (.716). If all schools were same size and all CS were FCS, R-squared would be 1.0.
- Predictive power of # of policies decreases as go up the CAPE pyramid (.408 -> .328 -> .127)
- Despite lower position in CAPE pyramid, % of HS with foundational CS (.363) is a better predictor than % of students in HS with CS (.295) of % in Students in foundational CS

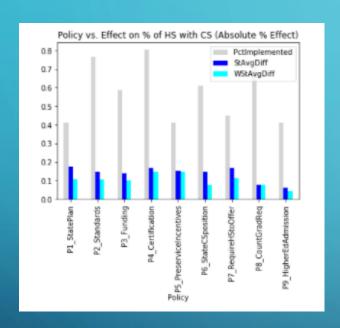
EFFECT OF INDIVIDUAL POLICIES

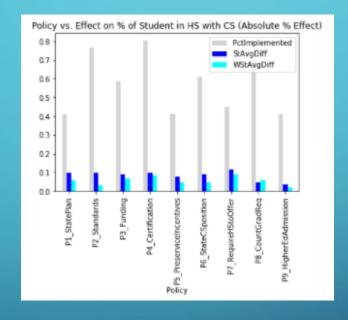
Correlation matrix between individual policies, number of policies implemented, and % of HS with Foundational CS

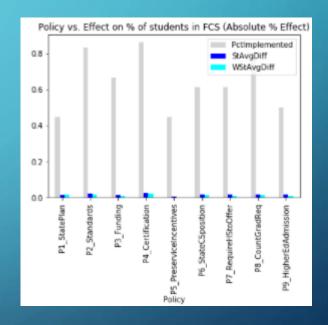
Correlation of Individual Policies vs. Success Metrics

	PctHSwFCS	PctStudentsHSwCS	PctInFCS
BP1_StatePlan	0.48	0.40	0.17
BP2_Standards	0.36	0.35	0.25
BP3_Funding	0.39	0.37	0.19
BP4_Certification	0.37	0.32	0.26
BP5_PreserviceIncentives	0.42	0.32	0.09
BP6_StateCSposition	0.40	0.37	0.24
BP7_RequireHStoOffer	0.46	0.48	0.23
BP8_CountGradReq	0.20	0.18	0.23
BP9_HigherEdAdmission	0.18	0.14	0.25
NumPolicies	0.64	0.57	0.36

	PctHSwFCS	PctStudentsHSwCS	PctInFCS
BP1_StatePlan	0.76	0.70	0.48
BP2_Standards	0.56	0.61	0.70
BP3_Funding	0.61	0.64	0.52
BP4_Certification	0.59	0.56	0.72
BP5_PreserviceIncentives	0.66	0.57	0.25
BP6_StateCSposition	0.64	0.64	0.68
BP7_RequireHStoOffer	0.73	0.84	0.66
BP8_CountGradReq	0.31	0.32	0.64
BP9_HigherEdAdmission	0.28	0.25	0.72
NumPolicies	1.00	1.00	1.00

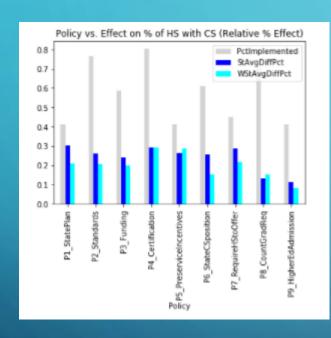

Absolute Correlation Value


Correlation Value Relative to # of Policies Correlation


Tables Created By Copying Data from Various Jupyter Notebooks and further processing/formatting in Excel

POLICY VS % CHANGE (ABSOLUTE)

Grey - % states policy implemented
Blue - % Difference between Avg
implemented vs. not (state equal weight
Cyan - % Difference between Avg
implemented vs. not (state size weighted)


% HS with Foundational CS

% Students in HS w/ CS

% Students in Foundational CS

POLICY VS. % CHANGE (RELATIVE)

Grey - % states policy implemented
Blue - % Difference between Avg
implemented vs. not (state equal weight
Cyan - % Difference between Avg
implemented vs. not (state size weighted)

Policy vs. Effect on % of Student in HS with CS (Relative % Effect)

By Standards

By

Policy vs. Effect on % of students in FCS (Relative % Effect)

Page 2 Standards

Page 2 Standards

Page 2 Standards

Page 3 Funding

Page 3 Funding

Page 3 Funding

Page 4 Certification

Page 3 Funding

Page 4 Certification

Page 4 Standards

Page 5 Funding

Page 6 Funding

Page 7 Funding

Page 8 Funding

Page 9 Fund

% HS with Foundational CS

% Students in HS w/ CS

% Students in Foundational CS

OBSERVATIONS

- Correlation between number of policies and other success metrics provides a baseline to understand the relative strength of each policy.
- Number of policies is more strongly correlated to all success metrics than any one policy
- Low positive correlation between individual policies seems to be a good sign
- P7 Requiring all schools to offer CS has strong correlation across all success metrics
- P6 CS Supervisor provides moderate correlation across all success metrics

MORE OBSERVATIONS

- P1 State Plan has strong correlation at Capacity/Access layer, but weak correlation at Participation layer
- P2 Standards, P4 Certification, P9 Higher Ed Admission have weak correlation at Capacity/Access layer, but stronger correlation at Participation layer. However, Participation layer only shows weak correlation to current tracked policies
- P3 Funding, P5 Preservice Programs, P8 Count Grad Requirements have weak correlation at two of layers and only moderate correlation at one layer

OVERALL CONCLUSIONS AND RECOMMENDATIONS

• TBD/For Discussion

LINKS

- Google Colab Notebooks
 - https://colab.research.google.com/drive/1AM9XiDWffbZKófpejKGW4VNHQjML3p5L?usp=sharing
 - https://colab.research.google.com/drive/1px_lbXFVVElbGNbCBs_AbUEefjK1pv57?usp=sharing
 - https://colab.research.google.com/drive/1XTa2745XZNSxDYkrQNwDq_5xQB-wtYJC?usp=sharing
- Data Files
 - https://drive.google.com/file/d/1jCUBaWoe52GdzlwLaM7TcZ_SQll9Jglv/view?usp=sharing (CSV)
 - https://docs.google.com/spreadsheets/d/1MZpi5Nid-BfpQ833Uy9rYgrvD8H3Yads/edit?usp=sharing&ouid=112866292549895118363&rtpof=true&sd=true (XLSX used to create CSV)
- Original Data Sources
 - https://advocacy.code.org/2021 State of CS data.xlsx (Numeric Data)
 - http://bit.ly/9policies (Policy data)

PLANNED NEXT STEPS

- Further Jupyter file cleanup and documentation
- Public Github Checkin. Kaggle?
- Gender/Ethnicity Data Study
- Location/FRL Data Study?
- Analysis with other state population/education data?